Consistency, integrability and asymptotic normality for some intermittent estimators
نویسندگان
چکیده
منابع مشابه
Consistency and Asymptotic Normality
The consistency and asymptotic normality of minimum contrast estimation (which includes the maximum likelihood estimation as a special case) is established if the sample is from a renewal process and the observation time tends to innnity. It is shown, that the conditions for consistency and asymptotic normality for maximum likelihood estimation are fulllled if the distribution of the time betwe...
متن کاملAsymptotic Normality for Deconvolving Kernel Density Estimators
Suppose that we have 11 observations from the convolution model Y = X + £, where X and £ are the independent unobservable random variables, and £ is measurement error with a known distribution. We will discuss the asymptotic normality for deconvolving kernel density estimators of the unknown density f x 0 of X by assuming either the tail of the characteristic function of £ behaves as II I~Oexp(...
متن کاملStatistical consistency and asymptotic normality for high-dimensional robust M-estimators
We study theoretical properties of regularized robust M -estimators, applicable when data are drawn from a sparse high-dimensional linear model and contaminated by heavytailed distributions and/or outliers in the additive errors and covariates. We first establish a form of local statistical consistency for the penalized regression estimators under fairly mild conditions on the error distributio...
متن کاملConsistency and Asymptotic Normality of Sieve Estimators Under Weak and Verifiable Conditions
This paper considers sieve estimation of semi-nonparametric (SNP) models with an unknown density function as non-Euclidean parameter, next to a finite-dimensional parameter vector. The density function involved is modeled via an infinite series expansion, so that the actual parameter space is infinite-dimensional. It will be shown that under weak and verifiable conditions the sieve estimators o...
متن کاملImproved Rates and Asymptotic Normality for Nonparametric Neural Network Estimators
Barron (1993) obtained a deterministic approximation rate (in L2-norm) of r-l12. for a class of single hidden layer feedforward artificial neural networks (ANN) with r hidden units and sigmoid activation functions when the target function satisfies certain smoothness conditions. Hornik, Stinchcombe, White, and Auer (HSWA, 1994) extended Barron's result to a class of ANNs with possibly non-sigmo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ALEA-Latin American Journal of Probability and Mathematical Statistics
سال: 2021
ISSN: ['1980-0436']
DOI: https://doi.org/10.30757/alea.v18-60